

Math Virtual Learning

Algebra IIB

Contracting a Logarithmic Expression

April 15, 2020

Algebra IIB Lesson: April 14, 2020

Objective/Learning Target: Students will contract a logarithmic function based on logarithmic rules.

Let's Get Started: BELLWORK: lets review expanding logs from yesterday

1. Expand: $\log_3(5x)$

2. Expand:
$$\log_4\left(\frac{XY}{Z}\right)$$

3: Expand: $\ln(4a^5)$

4. Expand:
$$6\log_2\left(\frac{m^5}{x^2y}\right)$$

Bellwork Answers:

- 1. Because the log has 2 terms that are multiplied, separate them into addition: $\log_3 5 + \log_3 x$
- 2. Because the log has a division, separate each term, adding the terms in the numerator and subtracting the term in the denominator: $\log_4 x + \log_4 y \log_4 z$
- 3. On the term that has an exponent, move the exponent to the front of the log: ln(4)+5ln(a)
- 4. Using all the rules: $6(\log_2 m^5 - \log_2 x^2 - \log_2 y)$ $6(5\log_2 m - 2\log_2 x - \log_2 y)$ $30\log_2 m - 12\log_2 x - 6\log_2 y$

Use the same log rules, going from the expanded form to the condensed form

Watch this video for more examples of how to condense a logarithm: Condensing Logarithmic Expressions

Let's practice using multiple rules:

Problem 1

 $\log_3 x + 2\log_3 y - 3\log_3 z$

Step 1: Change coefficients to exponents.

Problem 2

$$3\log_8 x - (\log_8(4) + \log_8 x)$$

Step 1: Change coefficients to exponents.

Problem 3

 $\log_3(4) - 2\log_3 x + \log_3(5)$

Step 1: Change coefficients to exponents.

Step 2: Combine the 1st 2 logs by multiplying and combine the final log by dividing.

Step 2: Combine the logs inside the parentheses by multiplying

Step 2: Combine the 1st 2 logs by dividing

Step 3: Combine the remaining logs by dividing.

Step 3: Combine remaining logs by multiplying.

Question: Does order matter? Look at question 1 and 3. Did the order of adding and subtracting the terms matter?

Practice Answers

Problem 1

 $\log_3 x + 2\log_3 y - 3\log_3 z$

Step 1: Change coefficients to exponents.

 $\log_3 x + \log_3 y^2 - \log_3 z^3$

Step 2: Combine the 1st 2 logs by multiplying and combine the final log by dividing.

 $\log_3 xy^2/z^3$

Problem 2

$$3\log_8 x - \left(\log_8(4) + \log_8 x\right)$$

Step 1: Change coefficients to exponents.

 $\log_8 x^3 - (\log_8 4 + \log_8 x)$

Step 2: Combine the logs inside the parentheses by multiplying $log_8 x^3 - (log_8 4x)$

Step 3: Combine the remaining logs by dividing. $\log_{e} x^{3}/4x$

Problem 3

 $\log_3(4) - 2\log_3 x + \log_3(5)$

Step 1: Change coefficients to exponents.

 $\log_{3}4 - \log_{3}x^{2} + \log_{3}5$

Step 2: Combine the 1st 2 logs by dividing

```
\log_{3}4/x^{2}+\log_{3}5
```

Step 3: Combine remaining logs by multiplying.

Question: Does order matter? Look at question 1 and 3. Did the order of adding and subtracting the terms matter? Multiply and dividing are commutative so order does not matter

Condense each expression to a single logarithm.

13)
$$\log 3 - \log 8$$

14) $\frac{\log 6}{3}$
19) $6 \log_3 u + 6 \log_3 v$
20) $\ln x - 4 \ln y$
21) $\log_4 u - 6 \log_4 v$
22) $\log_3 u - 5 \log_3 v$
23) $20 \log_6 u + 5 \log_6 v$
24) $4 \log_3 u - 20 \log_3 v$

17)
$$\log 7 - 2\log 12$$
 18) $\frac{2\log 7}{3}$

ANSWERS

13) log 3 - log 8 14) $\frac{\log 6}{3}$ 19) $6\log_3 u + 6\log_3 v$ 20) $\ln x - 4 \ln y$ $\log \frac{3}{8}$ $\log \sqrt[3]{6}$ $\log_3(v^6u^6)$ $\ln \frac{x}{v^4}$ 21) $\log_4 u - 6 \log_4 v$ 22) $\log_3 u - 5 \log_3 v$ 16) $\log 2 + \log 11 + \log 7$ 15) 4log 3 - 4log 8 $\log \frac{3^4}{8^4}$ log 154 $\log_4 \frac{u}{v^6}$ $\log_3 \frac{u}{v^5}$ 24) $4\log_3 u - 20\log_3 v$ 23) $20\log_6 u + 5\log_6 v$ $\frac{2\log 7}{3}$ 17) log 7 – 2 log 12 $\log_3 \frac{u^4}{v^{20}}$ $\log_6\left(v^5u^{20}\right)$ $\log \frac{7}{12^2}$ $\log \sqrt[3]{7^2}$

Challenge Problems

25) $2(\log 2x - \log y) - (\log 3 + 2\log 5)$

26) $\log x \cdot \log 2$

Challenge Answers

25) $2(\log 2x - \log y) - (\log 3 + 2\log 5)$ $\log \frac{4x^2}{75y^2}$ 26) $\log x \cdot \log 2$ Can't be simplified.

Problems from Kuta