Math Virtual Learning

Algebra IIB

Contracting a Logarithmic Expression

April 15, 2020

Algebra IIB
 Lesson: April 14, 2020

Objective/Learning Target:

Students will contract a logarithmic function based on logarithmic rules.

Let's Get Started:

BELLWORK: lets review expanding logs from yesterday

1. Expand: $\log _{3}(5 x)$
2. Expand: $\log _{4}\left(\frac{X y}{Z}\right)$

3: Expand: $\ln \left(4 a^{5}\right)$
4. Expand: $6 \log _{2}\left(\frac{m^{5}}{x^{2} y}\right)$

Bellwork Answers:

1. Because the log has 2 terms that are multiplied, separate them into addition: $\log _{3} 5+\log _{3} x$
2. Because the log has a division, separate each term, adding the terms in the numerator and subtracting the term in the denominator: $\log _{4} x+\log _{4} y-\log _{4} z$
3. On the term that has an exponent, move the exponent to the front of the log: $\ln (4)+5 \ln (a)$
4. Using all the rules:

$$
\begin{aligned}
& 6\left(\log _{2} m^{5}-\log _{2} x^{2}-\log _{2} y\right) \\
& 6\left(5 \log _{2} m-2 \log _{2} x-\log _{2} y\right) \\
& 30 \log _{2} \mathrm{~m}-12 \log _{2} x-6 \log _{2} y
\end{aligned}
$$

Use the same log rules, going from the expanded form to the condensed form

Logarithm Rules (condensed) (expanded)

1. $\log _{a} x y=\log _{a} x+\log _{a} y$
2. $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$
3. $\log _{a} x^{n}=n \log _{a} x$

$$
\log _{a} b=\frac{\log _{c} b}{\log _{c} a}
$$

Examples

Condense: $\log _{5} y+\log _{5} z \log _{5} y \cdot z$ Condense: $\log _{4} c-\log _{4} d \log _{4}\left(\frac{c}{d}\right)$ Condense: $2 \log _{11} h \quad \log _{11} h^{2}$

Watch this video for more examples of how to condense a logarithm: Condensing Logarithmic Expressions

Let's practice using multiple rules:

$$
\frac{\text { Problem } 1}{\log _{3} x+2 \log _{3} y-3 \log _{3} z}
$$

Step 1: Change coefficients to exponents.

Step 2: Combine the 1 st 2 logs by multiplying and combine the final log by dividing.

Step 3: Combine the remaining logs by dividing.

Problem 3

$$
3 \log _{8} x-\left(\log _{8}(4)+\log _{8} x\right)
$$

Step 1: Change coefficients to exponents.

Step 2: Combine the logs inside the parentheses by multiplying logs by dividing.

$$
\log _{3}(4)-2 \log _{3} x+\log _{3}(5)
$$

Step 1: Change coefficients to exponents.

Step 2: Combine the 1st 2 logs by dividing

Step 3: Combine remaining logs by multiplying.

Question: Does order matter? Look at question 1 and 3. Did the order of adding and subtracting the terms matter?

Practice Answers

$$
\frac{\text { Problem } 1}{\log _{3} x+2 \log _{3} y-3 \log _{3} z}
$$

Step 1: Change coefficients to exponents.

$$
\log _{3} x+\log _{3} y^{2}-\log _{3} z^{3}
$$

Step 2: Combine the 1st 2 logs by multiplying and combine the final log by dividing.

$$
\log _{3} x y^{2} / z^{3}
$$

Problem 2

$$
3 \log _{8} x-\left(\log _{8}(4)+\log _{8} x\right)
$$

Step 1: Change coefficients to exponents.

$$
\log _{8} x^{3}-\left(\log _{8} 4+\log _{8} x\right)
$$

Step 2: Combine the logs inside the parentheses by multiplying

$$
\log _{8} x^{3}-\left(\log _{8} 4 x\right)
$$

Step 3: Combine the remaining logs by dividing.

$$
\log _{8} x^{3} / 4 x
$$

Problem 3

$$
\log _{3}(4)-2 \log _{3} x+\log _{3}(5)
$$

Step 1: Change coefficients to exponents.

$$
\log _{3} 4-\log _{3} x^{2}+\log _{3} 5
$$

Step 2: Combine the 1st 2 logs by dividing

$$
\log _{3} 4 / x^{2}+\log _{3} 5
$$

Step 3: Combine remaining logs by multiplying.

$$
\log _{3} 20 / x^{2}
$$

Question: Does order matter? Look at question 1 and 3. Did the order of adding and subtracting the terms matter? Multiply and dividing are commutative so order does not matter

Condense each expression to a single logarithm.
13) $\log 3-\log 8 \quad$ 14) $\frac{\log 6}{3}$
19) $6 \log _{3} u+6 \log _{3} v \quad$ 20) $\ln x-4 \ln y$
21) $\log _{4} u-6 \log _{4} v$
22) $\log _{3} u-5 \log _{3} v$
15) $4 \log 3-4 \log 8 \quad 16) \log 2+\log 11+\log 7$

$$
\text { 23) } 20 \log _{6} u+5 \log _{6} v
$$

$$
\text { 24) } 4 \log _{3} u-20 \log _{3} v
$$

17) $\log 7-2 \log 12$
18) $\frac{2 \log 7}{3}$

ANSWERS

13) $\log 3-\log 8$

$$
\log \frac{3}{8}
$$

15) $4 \log 3-4 \log 8$

$$
\log \frac{3^{4}}{8^{4}}
$$

17) $\log 7-2 \log 12$

$$
\log \frac{7}{12^{2}}
$$

14) $\begin{aligned} \frac{\log 6}{3} \\ \log \sqrt[3]{6}\end{aligned}$
15) $\log 2+\log 11+\log 7$ $\log 154$
16) $\frac{2 \log 7}{3}$
$\log \sqrt[3]{7^{2}}$
17) $6 \log _{3} u+6 \log _{3} v$

$$
\log _{3}\left(v^{6} u^{6}\right)
$$

21) $\log _{4} u-6 \log _{4} v$

$$
\log _{4} \frac{u}{v^{6}}
$$

23) $20 \log _{6} u+5 \log _{6} v$

$$
\log _{6}\left(v^{5} u^{20}\right)
$$

20) $\ln x-4 \ln y$

$$
\ln \frac{x}{y^{4}}
$$

22) $\log _{3} u-5 \log _{3} v$

$$
\log _{3} \frac{u}{v^{5}}
$$

24) $4 \log _{3} u-20 \log _{3} v$ $\log _{3} \frac{u^{4}}{v^{20}}$

Challenge Problems

25) $2(\log 2 x-\log y)-(\log 3+2 \log 5)$
26) $\log x \cdot \log 2$

Challenge Answers

25) $2(\log 2 x-\log y)-(\log 3+2 \log 5)$
$\log \frac{4 x^{2}}{75 y^{2}}$
26) $\log x \cdot \log 2$

Can't be simplified.

